Summary from the authors: genetic architecture of sexual dimorphism in an interspecific cross

The evolution of differences among females and males or sexual dimorphism (SD) is very common in animals but rare in plants. These differences emerge because there is a conflict of interests between sexes to maximize their reproductive success. Thus,  moving genes of reproductive traits to low recombining regions such as the sex chromosomes might be one way to solve this conflict at the genomic level. Closely related species with young sex chromosomes, which differ in the degree of SD, are ideal systems to explore the underlining genetic architecture of SD. We have crossed a female from Silene latifolia with marked SD with a male from S. dioica with less SD. We performed a QTL analysis of reproductive and vegetative traits in the F2 hybrids to find out if sexually dimorphic traits are located on the sex chromosomes, and how they contribute to species differences. Our results support that evolutionary young sex chromosomes are important for the expression of both SD and species differences. Moreover, transgressive segregation (traits with extreme values) and a reversal of SD in the F2s indicated that SD is constrained within the species but not in the recombinant hybrids. Sexual selection can, thus, contribute to speciation.

Full article: Baena-Díaz F, Zemp N, Widmar A. 2019. Insights into the genetic architecture of sexual dimorphism from an interspecific cross between two diverging Silene (Caryophyllaceae) species. Molecular ecology.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s