Summary from the authors: Interdependent sensory systems regulate larval settlement in a marine sponge

In the ocean, pelagic larvae that settle onto the seafloor and metamorphose into an adult directly regulate the ecology and evolution of all benthic communities. To settle, larvae of most species need to encounter specific biochemical cues that indicate an optimal environment, and many also prefer to settle in the dark. It appears likely, then, that larval responses to light and to biochemical cues are closely linked, but exactly how this happens at a molecular level is largely unexplored.

We explored how changes in gene expression regulate larval settlement in a marine sponge. We find that these larvae naturally settle at twilight, and that this is directly related to the expression of receptors and signalling pathway components. Further, we find that constant light prevents larval settlement via blocking the ability of larvae to respond to biochemical cues. Our data provide the first suggestions of candidate genes and molecular pathways that may regulate the way in which light can directly affect larval settlement. Our findings in a sponge, one of the earliest branching extant animal lineages, raises the possibility that larval responses to light and to biochemical cues might be a mechanism regulating settlement across the animal kingdom.

(Left) Scanning electron micrograph of an Amphimedon queenslandica larva. A ring of very long cilia, which are associated with photosensory pigment cells, are clearly visible at the posterior end of the larva. Photo credit: Sally Leys. (Right) Tahsha Say in the field on Heron Island Reef flat, Great Barrier Reef, Australia.

Full article: Say, TE, Degnan, SM. Molecular and behavioural evidence that interdependent photo ‐ and chemosensory systems regulate larval settlement in a marine sponge. Mol Ecol. 2020; 29: 247– 261. https://doi.org/10.1111/mec.15318

This summary was written by the study’s first author,TE Say.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s