Interview with the authors: testing the role of ecological selection on color pattern variation

The color variation that exists among individuals has lent itself to the study of selection since Darwin. Recently, Zaman, Hubert, and Schoville (2019) investigated the effects of selection on the diversity of the wing color pattern in the butterfly Parnassius clodius across a large portion of its range. These researchers found evidence supporting the idea that coloration may serve as a warning signal to predators, providing some predator avoidance benefits to individuals. In addition, the variation of solar radiation and precipitation observed geographically across sites was negatively correlated with the amount of melanin observed at each site. This suggests that the occurrence of melanin may provide a selective advantage in the form of thermoregulatory function. For more information on how selection influences butterfly wing coloration, please see the full article and the interview with Dr. Schoville below. 

Parnassius clodius mating, male located below female. Photo by Sean Schoville.

What led to your interest in this topic / what was the motivation for this study? Khuram and I were both interested in butterfly color pattern variation, and in particular, cases where there might be competing selective pressures acting on wing pattern phenotypes. Most work on butterfly wing patterns focuses on predator-prey interactions and aposematic colors, but butterfly wings are essential to flight performance and important in thermal regulation. A number of recent papers have shown that butterfly color pattern appears to be responding to climate warming, and then there are well-known cases (such as alpine Colias, thanks to Ward Watt) where thermoregulation has been linked to basking behavior and the pigment on wings. Thus, in examining variation in Parnassius clodius (which occurs over a broad elevation and latitudinal range), we hoped that we could decouple environmental signals that might act on different wing color elements. 

What difficulties did you run into along the way? Sampling our butterflies across this large region was a major challenge, particularly as adult flight times are rather short (two to three weeks). And then we were surprised by the strong difference in adult phenology across sites (some adults are active in May, others in late July). This is evident regionally (Utah versus Washington), and across elevation within a region. In the end, it required three years of effort, with some very long road trips from Wisconsin.

What is the biggest or most surprising innovation highlighted in this study? After some initial efforts to link aposematic variation (red eyespots) indirectly to predator communities (through climate variables that might covary with predator abundance), we realized this was too tenuous. So, we were delighted to discover publicly available data on bird abundance. While this did not solve the problem (perhaps due to lack of spatial resolution in the bird data), I think using this data to analyze butterfly wing patterns was one of the more innovative aspects of our paper. We had a much easier time linking spatial climate data to melanization (dark pigmentation). As an aside, this raises the important point that some data, i.e. abiotic environmental data, is much easier to come by than biotic data. This is unfortunate, as we expect biotic selective forces to be equally or more important drivers of microevolution in some cases.

Lead author on this study, Khuram Zaman, after a day of collecting samples. Photo by Sean Schoville.

Moving forward, what are the next steps in this area of research? We’d like to extend this work in two directions. First, we’d like to connect color pattern traits to underlying genes and measures of heritability. Although the genes controlling butterfly color pattern are well studied, to date no representative of the snow Apollo subfamily Parnassinae have been included in these efforts. Members of the family are tremendously variable and quite stunning in their dramatic contrasts of color. Second, experiments are needed to link our inferences of ecological selection to fitness differences, as well as performance in the field. Physiological assays of melanic variants, coupled with mechanistic thermodynamic models, have been developed for Colias butterflies (see Joel Kingsolver and Lauren Buckley’s work). This type of modeling could provide important connections to conservation of Parnassius clodius populations under changing climates, and might perhaps extend to conservation work on other highly threatened Parnassius species.

What would your message be for students about to start developing or using novel techniques in Molecular Ecology? The development of novel approaches is a key part of advancing biological knowledge, but it can be a daunting endeavor given the breadth and scope of the scientific literature nowadays. Integrating multiple approaches, on the other hand, can equally help to advance our knowledge and provide opportunities to address long-standing questions. This is the direction we took in this paper. My personal view is that students should to try to master multiple techniques (assemble a toolkit, so to speak) and apply those techniques to fundamental problems. Hopefully, it’s a lot of fun in the process and leads to interesting collaborations!

What have you learned about methods and resources development over the course of this project? We are entering a golden age of data-rich resources, in terms of spatial environmental data and genomics data. These increasingly provide the power to test refined hypotheses about evolutionary and ecological processes, and are becoming more accessible to all researchers. One of my favorite accomplishments in the paper is using genetic covariance data among populations (relatedness data) as a covariate in fitting morphology ~ environment models. The use of such population contrasts is important in controlling for non-independence in the data due to ancestry. While we have known about the importance of genetic covariance in hypothesis testing for some time (thanks to Joseph Felsentstein’s work), it is only recently possible to use genome-wide data. This provides very precise measures that are highly informative, and enabled us to rule out the role of genetic drift as a driver of wing pattern variation. 

Describe the significance of this research for the general scientific community in one sentence. Our research demonstrates that butterfly wing color patterns evolve in response local climate conditions, as a way to regulate body temperature.

Describe the significance of this research for your scientific community in one sentence. Our work demonstrates that elements of butterfly wing pattern phenotypes respond independently to different sources of selection, with climate variation acting on thermoregulatory ability as an important driver of butterfly color pattern.

Parnassius clodius basking to thermoregulate. Photo by Sean Schoville.

Zaman K, Hubert MK, Schoville SD. 2019. Testing the role of ecological selection on color pattern variation in the butterfly Parnassius clodius. Molecular Ecology 28:50586-5102.

Interview with the authors: glacial refugia and the dispersal of terrestrial invertebrates

Antarctica is an extreme and isolated environment that supports a variety of species. However, we know little about how terrestrial species survive in these kinds of conditions. In a recent paper in Molecular Ecology, McGaughran and colleagues investigated a widespread group of terrestrial invertebrates to understand how species have persisted in this harsh environment. These researchers found that there were many local clusters of individuals with substantially more long-distance dispersal events than were previously identified. These long-distance dispersers were likely aided by wind, providing an interesting example of the link between environmental conditions and population stability. For more information, please see the full article and the interview with McGaughran, lead author of the study, below. 

Antarctic Peninsula taken near the tip. Photo created by Dr. Ceridwen Fraser.

What led to your interest in this topic / what was the motivation for this study? 
During my PhD, I researched genetic and physiological diversity of Antarctic terrestrial invertebrates, spending a collective ~6 months on the ice.  I then stepped away from Antarctic research for several years, completing postdocs in Germany and Australia, but I never forgot my time in Antarctica or my love for its unique environment.  Thus, I’ve maintained collaborative links that have allowed me to continue to contribute to Antarctic research.  In this study, we wanted to see whether genomic data would give us greater insight to the evolutionary history of invertebrates along the Antarctic Peninsula than had been gained with single-gene analysis in the past.  

What difficulties did you run into along the way? 
Getting workable quantities of DNA from tiny (~1 mm) springtails to use in genomic applications is difficult.  In fact, for this study, we tried to extract DNA from several Antarctic springtail species, but were only successful in our attempts with Cryptopygus antarcticus antarcticus.  Low DNA concentrations can also mean that the genomic data we end up with for analysis is patchy.  These aspects provide some challenges, but the methodologies underlying library preparation and sequencing are continually improving and we are excited about the potential of applying genomic methodologies to more Antarctic taxa in the future.

What is the biggest or most surprising finding from this study? 
Using genome-wide data, we were able to find evidence for a greater frequency of dispersal events than had been previously shown with single-gene data.  This was particularly surprising because dispersal for Antarctic invertebrates is hard.  These animals live under the rocks in moist ice-free areas.  As soon as they leave the relative safety of the soil column, they are exposed to freezing and desiccating conditions.  Thus, though we have some evidence to suggest that springtails can survive for short periods in humid air columns or floating on water, our expectation is that such events would be rare.  Finding genetic evidence that suggested several instances of successful dispersal over extremely long geographic distances was therefore surprising.

Moving forward, what are the next steps for this research? 
Much of the Antarctic literature focused toward understanding evolutionary and biogeographic questions has been based on single-gene analyses because genomic approaches are still relatively new.  This previous work has been informative about the fact that many Antarctic terrestrial species have survived glaciation in refugia, but there is much that remains to be discovered.  Antarctica is a kind of barometer for the rest of the world and it is important that we understand how species there have responded to environmental change in the past and how they may do so in the future.  Thus, key to extending this research will be to bring genomic approaches to bear on other populations and species in Antarctica.  This will help us to gain an understanding of how isolated Antarctica really is, and how its endemic species will likely respond to future environmental changes.

What would your message be for students about to start their first research projects in this topic? 
In this genomic and associated bioinformatic era, learning the skills of a well-rounded biologist who has a breadth of understanding that spans the field, the laboratory, and the computer, can be daunting.  As you develop or use novel techniques in Molecular Ecology, my message would be to stick with it through the hard stuff.  It is such an exciting time to be an evolutionary biologist and, though it can involve some really tough moments, the revelations we can achieve about how the world works are key.  Alongside this, I would suggest that collaboration is now more important than ever – don’t feel like you have to reinvent the wheel or be an expert on every single aspect of your research.  Instead, develop your own niche and share in the expertise of those around you to do the best science together.

What have you learned about science over the course of this project? 
When I first started doing research, there was no such thing as genomics or next generation sequencing and we simply didn’t have the means to gain genome-wide data.  In recent years, the face of evolutionary biology has changed due to the revolution in sequencing technology and bioinformatics.  As exemplified by this project, I’ve learned that genomic data can provide new and more nuanced insights into our biological questions of interest.  And, though it can be hard at times to work in such a swift-moving area of research, it is ultimately very rewarding.

Describe the significance of this research for the general scientific community in one sentence.
The environment, especially wind, plays an important role in structuring patterns of genetic diversity among Antarctic populations – thus future climatic changes are likely to have a significant impact on the distribution and diversity of these populations.  

Describe the significance of this research for your scientific community in one sentence.
Bringing genomic data to bear on long-standing evolutionary questions in Antarctica is a worthwhile and fruitful endeavour that will ultimately produce greater insights into understanding and protecting Antarctic taxa.

Dry Valleys taken in the Antarctic Dry Valleys. Photo created by Dr. Angela McGaughran.

McGaughran A, Terauds A, Convey P, Fraser CI. 2019. Genome‐wide SNP data reveal improved evidence for Antarctic glacial refugia and dispersal of terrestrial invertebrates. Molecular Ecology. 28:4941-4957. https://doi.org/10.1111/mec.15269.